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In this paper, we propose two generalized Bayesian imprecise probability approaches 
for estimation of proportions under potentially nonignorable nonresponse using data 
from small domains. Our approaches produce reliable inference, refraining from strong 
assumptions on the response process that are typically not testable. Hence, our estimates 
avoid the possibly severe bias arising from fallaciously imposing such assumptions. 
Specifically, we generalize the imprecise Beta model to the small area estimation 
setting, first treating the missing values in a radically cautious way and then deriving a 
method that allows incorporating powerfully weak knowledge on the missingness process. 
Additionally, we extend the empirical Bayes small area estimation approach applied by 
Stasny [27] through considering a set of priors arising from neighborhood of maximum 
likelihood estimates of the hyperparameters. As an illustration, we reanalyze data from the 
American National Crime Survey to estimate the probability of victimization in domains 
formed by cross-classification of certain characteristics.

© 2019 Elsevier Inc. All rights reserved.

1. Background

Censuses and sample surveys are the main sources of data for both official authorities and private sector entities. Since 
censuses are very time and resources consuming, sample surveys are usually favored to provide estimates for the parameters 
of interest. A major problem with estimates pertaining to a small domain is that direct estimators based only on domain 
data usually yield unacceptably large standard errors due to the corresponding small domain sample size. One main reason 
for the small sample sizes is that survey resources do not allow for accepted accuracy at all levels of domains. To overcome 
this problem, a set of statistical methods has been developed to estimate reliable domain-specific parameters and is known 
as Small Area Estimation (SAE) with the terms area and domain being used interchangeably. The main approach of SAE 
is to compensate insufficient domain sample size through the use of data from other domains in a practice known as 
borrowing strength that is carried out under the assumption of domains similarity. Ghosh and Rao [9], Pfeffermann [19] and 
Pfeffermann [20] gave timely reviews of SAE techniques and their developments. Rao and Molina [26] gave a comprehensive 
account of theoretical and practical aspects of SAE.
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Technically, SAE is a field of research where Bayesian approaches are very naturally justified. Assuming that domain-
specific parameters follow a common (prior) distribution is a very natural way of “borrowing strength from the ensemble” 
(Morris [14, p. 47]). Practically, empirical Bayes and hierarchical Bayes are two of the widely used SAE techniques.

In the field of official statistics, the use of SAE techniques was promoted by the US Census Bureau as a means to overcome 
the problem of undercounting, (cf. Platek et al. [24]). Vividly discussed large scale applications of SAE include also the 2011 
population censuses in Germany (cf. Münnich et al. [15,16]), and England and Wales (cf. Baffour et al. [2]). See also Tzavidis 
et al. [28] for a comprehensive production framework for small area official statistics.

Many surveys suffer from severe nonresponse. In a SAE setting, nonresponse has even a worse consequence, as it may 
severely reduce the amount of information in the – already small – domain sample, leading to very high variance of the 
estimators and a severe systematic bias. Classical remedies for nonresponse depend mainly on the implied missingness 
mechanism defined in the sense of Little and Rubin [10] where assumptions regarding the missingness mechanism and 
other – usually accompanied – distributional assumptions are required, and even enforced, to achieve point identifiability. 
For example, weighting and imputations techniques, which are among the common practices, assume nonresponse to occur 
(conditionally) randomly, i.e. independently of the data generating process given observed covariates. Additionally, modeling 
the response process along with the target variable through a precise model is the usual approach under the assumption 
of nonrandom nonresponse. Problematically, such assumptions are usually not testable and fallaciously imposing them may 
lead to severely biased estimates.1 Manski [11], among others, argued in favor of an approach that is reluctant towards 
strong assumptions and thus, capable of producing credible results. To establish such approach, one needs to abandon 
the point-identifiability mindset towards a partial identifiability mindset, where the sought true value is located within a 
set or an interval whose limits are attainable without imposing unjustified assumptions. This cautious approach to deal 
with missing data has already been applied to produce credible estimates in the field of official statistics, for example by 
Manski [12]. In the field of SAE, Plass et al. [23] considered data from the German General Social Survey that suffer from 
nonresponse and produced cautious versions of some prominent small area estimators based on a generalized likelihood 
approach.

This criticism of the devastating effects spurious information from wrongly imposed assumptions on the missingness 
process may have on the analysis is also valid for most Bayesian approaches. It applies not only to direct Bayesian estimation 
of proportions under assumed missing at random, but ultimately also extends to all approaches where – on whatever 
level of a hierarchical model – prior probabilities are unjustifiably treated as known in advance. An approach where the 
underlying prior parameters are not fixed in advance has been proposed by Stasny [27] who developed a hierarchical model 
connecting the classification process and the response process. Stasny estimated the values of the prior hyperparameters by 
an empirical Bayes approach. These values are fixed in the subsequent analysis and regarded as the “true” values. Hence, 
this approach, too, has to be judged as overprecise, eventually.

Against this background, we propose in this article two approaches for a cautious treatment of nonresponse in data 
from small domains, generalizing the traditional Bayes approaches. Specifically, we estimate the classification probability of 
a binary variable in small domains using data that suffer from nonresponse. First, we communicate the uncertainty implied 
through nonresponse as well as prior ignorance by utilizing an appropriately generalized version of Walley [30] imprecise 
Beta model for a direct generalized Bayesian analysis of our data situation. In this framework, we also apply an imprecise 
Beta model to the response process itself, which provides us with the opportunity to incorporate additional information on 
the missingness process derived from the subject matter context. Secondly, we extend Stasny [27] empirical Bayes approach 
by considering a set of priors consisting of all priors in the neighborhood of the maximum likelihood estimator of the 
hyperparameters. To illustrate our methods and to compare our results with previous studies, we reanalyze data from the 
National Crime Survey regarding the victimization status of the residents in certain domains within the United States. These 
data have been previously analyzed by Stasny [27] and Nandram and Choi [17].

The rest of this article is organized as follows: Section 2 presents the data and outlines previous analyses run on it. 
Section 3 is devoted to our generalization of the imprecise Beta model to handle nonrandom nonresponse in the SAE setting, 
where we briefly recall the basic model and discuss a radically cautious treatment of missing data. In Section 4, we derive a 
cautious direct estimator of the ratio of response probabilities. Combining results from the two previous sections enables us 
in Section 5 to incorporate powerfully weak knowledge about the response process into our analysis. Section 6 introduces 
our extension of the empirical Bayes estimation framework, where sets of prior probabilities forming neighborhoods of 
hyperparameters around Stasny [27] estimator are considered. Section 7 gives some concluding remarks.

2. Notation and basic model

The National Crime Survey (NCS) is a large-scale household survey conducted by the U.S. Census Bureau. In the NCS, 
members of selected households are asked about crimes committed against them or their properties in the previous six 
months. Stasny [27] created a subset of the NCS data pertaining to the first half of 1975. The data are post-stratified into 10 
domains according to three domain characteristics: (1) urban (U) or rural (R); (2) central city (C), other incorporated place 

1 See for instance the simulation results given in Plass et al. [21, Figure 2] pertaining estimation of proportions.
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Table 1
National Crime Survey Data (Stasny [27]) and θ estimates under the naive, empirical 
Bayes (Stasny [27]) and full Bayes (Nandram and Choi [17]) estimation schemes.

Domain y r n θ̂
(N)

θ̂
(E)

θ̂
(F )

UCL 156 711 815 0.219 0.272 0.270
UCH 95 459 532 0.207 0.265 0.261
UIL 162 719 820 0.225 0.276 0.263
UIH 72 334 370 0.216 0.254 0.244
UNL 92 389 468 0.237 0.305 0.300
UNH 15 55 64 0.273 0.287 0.270
RIL 11 47 54 0.234 0.265 0.256
RIH 10 115 135 0.087 0.185 0.210
RNL 35 309 341 0.113 0.166 0.184
RNH 79 492 556 0.161 0.213 0.217

(I) or unincorporated/not a place (N) and (3) low poverty level (L) (less than 10% of the families are below the poverty level) 
or high poverty level (H) (at least 10% of the families are below the poverty level). The data are presented in Table 1.

Due to the sensitive nature of certain crimes, it is suspected that not all victims of such crimes would openly report 
them during the survey. Hence, nonresponse should not be naively treated as occurring randomly. To model this, a two-step 
model will be considered later.

Let the binary variables Yij and Rij represent, respectively, the victimization status and the response indicator of house-
hold j in domain i, j = 1, · · · , ni , i = 1, · · · , m, where ni is the ith domain sample size and m is the number of domains; 
and yij, ri j are their observed counterparts. It is of interest to estimate θi , the probability that at least one victimization 
occurred to a household member in domain i during the previous six months, where

θi = P(Yij = 1), i = 1, · · · ,m, (1)

hereafter the victimization probability in domain i. Additionally, let ri = ∑ni
j=1 ri j and yi = ∑ni

j=1 yij represent, respectively, 
the number of respondents and the number of observed victimization (successes) in the ith domain sample. Finally, n, r
and y represent vectors of their counterparts ni , ri and yi , respectively.

Stasny [27] considers a two-step model, with a first model for the victimization, and a second model for the response 
that is based on the true victimization status. Specifically, Yij is assumed to be independently distributed Bernoulli(θi)

random variables and nonresponse is modeled to be nonrandom by defining the response probabilities

πit = P(Rij|Yij = t), t = 0,1. (2)

To allow borrowing of strength across different domains, prior similarity among domains regarding both the victimization 
process and the response process is assumed via the common priors

θi
iid∼ Beta(a,b), πit

iid∼ Beta(αt, βt). (3)

Following the empirical Bayes framework (see, e.g., Casella [5] for a tutorial), the marginal likelihood is first optimized 
w.r.t. φ = (a, b, α0, β0, α1, β1)

ᵀ , the vector of hyperparameters, which means, informally speaking, that the space of the 
hyperparameters is searched for the values that would have best predicted the actually observed sample. The maximum 
likelihood estimator φ̂ is then received and treated as fixed thereafter to obtain the following empirical Bayes estimator 
(Stasny [27, p. 299])

θ̂
(E) =

(ni−ri∑
k=0

Tik (yi + a + k/ni + a + b)

)(ni−ri∑
k=0

Tik

)−1

, (4)

where Tik = (ni−ri
k

) · B(yi + a + k, ni − yi + b − k) · B(yi + α1, β1 + k) · B(ri − yi + α0, ni − ri + β0 − k).
Nandram and Choi [17] analyzed the same data using similar priors, but they followed the classical precise full Bayesian 

framework by imposing further prior distributions on φ assuming further parameters that are fixed on a higher level. They 
used an MCMC algorithm to sample from the posterior distribution, hence, obtaining the full Bayes estimator θ̂

(F )
. Table 1

shows a comparison between the naive estimator of θ̂
(N)

(obtained using only complete observed data) and the posterior 
estimators θ̂

(E)
and θ̂

(F )
.

A common characteristic of both previous analyses is that they follow traditional Bayesian frameworks that treat the 
hyperparameters of the final models as fixed. Additionally, both imposed strict distributional assumptions while modeling 
the nonresponse. In contrast, we propose two less restrictive and cautious treatments that result in set-valued estimates 
instead of the usual single-valued estimates. Nevertheless, these set-valued estimates entertain a high degree of credibility 
as they do not depend on untestable assumptions. Each of the following two sections represents the proposed treatments, 
respectively.
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3. Direct cautious modeling based on the imprecise Beta model

In this section, we discuss how to express both the uncertainty associated with nonresponse and the uncertainty result-
ing from prior ignorance. We give a brief account of the usual Bayesian estimation of proportion. Then, we elaborate on our 
first proposed treatment.

Consider for a moment the ideal situation where no nonresponse occurs in the ith domain sample. In this case, yi is 
equivalent to yi , the “true” number of successes. Under the traditional Bayesian framework, it is natural to consider the 
conjugate Beta-Binomial model for θi receiving the conjugate posterior mean estimator

θ̂i|yij = yi + a

ni + a + b
. (5)

To express uncertainty associated with prior ignorance about the probability of success in a Binomial experiment, Walley 
[30] introduced the imprecise Beta model (IBM).2 Unlike the traditional Bayes approach, where a single (vague) prior is 
utilized, the IBM expresses prior uncertainty by defining a set of Beta prior distributions, connected through a common 
hyperparameter. This set of priors is to be updated into an equivalent set of Beta posteriors after obtaining the sample.

Adopting the IBM to the SAE setting, we can express uncertainty about each θi by defining Mν , the set of all Beta 
distributions that have a fixed value, ν , as the summation of their parameters. After observing yi successes in the ith domain 
sample, each prior in Mν is updated into a corresponding posterior that is in Mni+ν , the set of all Beta distributions that 
have ni + ν as the summation of their parameters.

Inference about certain events and parameters defined on the convex space of θi is attainable in the form of set-valued 
estimates whose minimum and maximum values are found by optimizing (5) w.r.t. a constraining for ν = a + b. It is 
straightforward to deduce that

θ̂i|yij ∈
(

yi

ni + ν
,

yi + ν

ni + ν

)
. (6)

Now, consider the case of nonresponse, where yi is no longer available. Without forcing any assumptions pertaining the 
nonresponse process, it is certain that

yi ∈ [yi,yi + ni − ri]. (7)

Incorporating (7) in (6), the following set-valued estimator �̂i can be obtained

�̂i :=
(
�̂i, �̂i

)
:=

(
yi

ni + ν
,
yi + ni − ri + ν

ni + ν

)
, i = 1, · · · ,m. (8)

The borrowing of strength typical for the SAE context is expressed by the common parametrization of the Beta distribu-
tion with parameters (a, b) and confines the vector θ = (θ1, · · · , θm)ᵀ to be within �̂, a proper subset of the cube ×m

i=1�̂i

produced from (8), where

�̂ :=
{(

y1 + a

n1 + ν
, · · · ,

ym + nm − rm + a

nm + ν

)ᵀ ∣∣∣∣a ∈ (0, ν)

}
. (9)

Since, however, �̂ cannot be fully described component-wise, in the left panel of Table 2 we only show the component-wise 
projections, i.e. domain specific set-valued estimates �̂i for the NCS data (using ν = 1).

Our procedure resembles the approaches of Ramoni and Sebastiani [25], De Cooman and Zaffalon [8] and Utkin and 
Augustin [29]. It can also be seen as a natural application of cautious data completion discussed in Augustin et al. [1, Sec-
tion 7.8.2] to adjust for missingness while refraining from any distributional assumptions on the missingness process. It may 
be noted that the set-valued estimates �̂i contain, for each domain, the naive estimates, the empirical Bayes estimates and 
the full Bayes estimates shown in Table 1. This confirms the cautious nature of our approach depicted in its similarity to the 
approaches mentioned above, where cautious set-valued estimates contain single-valued estimates produced by traditional 
precise approaches.

4. Cautious estimation of the response ratio

The treatment developed above is radically cautious in the sense that it imposes no assumptions regarding the miss-
ingness process and considers all possible values for the missing data. A direct implication is that the set-valued estimates 
resulting from applying this treatment are characterized by having broad intervals that may not convey insights regard-
ing θi that are judged informative enough from the perspective of the intended application. The results shown in Table 2

2 For a detailed justification of the approach see also the intensive discussion of its multinomial counterpart, the imprecise Dirichlet model, in Walley 
[31] and Bernard and Ruggeri [4].
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Table 2
Interval limits of the posterior expectations �̂i for the NCS data under the extension 
of the IBM, range of the response rate Rni ,ri ,yi and �̂i assuming a specific R� .

Domain ν = 1 R̂�
i (ni , ri ,yi) R�

i < 1

�̂i �̂i Ri Ri �̂i �̂i

UCL 0.191 0.320 0.598 1.19 0.220 0.320
UCH 0.178 0.317 0.562 1.20 0.207 0.317
UIL 0.197 0.322 0.614 1.18 0.225 0.322
UIH 0.194 0.294 0.661 1.14 0.216 0.294
UNL 0.196 0.367 0.535 1.27 0.237 0.367
UNH 0.231 0.385 0.600 1.25 0.275 0.385
RIL 0.200 0.345 0.579 1.22 0.236 0.345
RIH 0.074 0.228 0.323 1.20 0.088 0.228
RNL 0.102 0.199 0.515 1.12 0.114 0.199
RNH 0.142 0.259 0.549 1.16 0.161 0.259

confirm this notice. It is then desirable to reach meaningful (i.e. narrower) set-valued estimates. The sensible way to reach 
them would be by implying some sort of premises regarding the missingness process, in particular as often some weak 
background knowledge is available which could not be used in a traditional, precise approach, but proves to be powerful in 
our setting. It seems, then, that a trade off between an assumption-free treatment and informative estimates is inevitable. 
One can argue, however, in favor of well-grounded assumptions. The incorporation of such tenable assumptions regarding 
the missingness process to obtain narrower set-valued estimates has been studied by Plass et al. [22] in the likelihood 
framework.

To make use of such assumptions in our proposed treatment we need to establish a relationship between the unknown 
frequency yi and the missingness process. To do so, let Ri be the response ratio by which households with positive vic-
timization status, i.e. (Y = 1), respond comparing to households with negative victimization status, i.e. (Y = 0), in the ith 
domain, i = 1, · · · , m. That is,

Ri = πi1

πi0
, (10)

where πit, t = 0, 1 are the response probabilities defined in (2). As long as the data set contains nonresponse, we are sure 
that Ri > 0. Furthermore, the case where Ri = 1 refers to the assumption of missing (completely) at random that promotes 
the use of only the complete data leading to the naive estimates θ̂

(N)
in Table 1.

Since the response processes for the victimized and the non-victimized households can be thought of as separate Bino-
mial experiments where yi ∼ Bin(yi, πi1) and ri − yi ∼ Bin(ni − yi, πi0), uncertainty associated with prior ignorance of πit
can be expressed through the IBM as was shown previously for θi .

Hence, we deduce (in the notation of Stasny [27] with ν1 = α1 +β1 and ν0 = α0 +β0) the following set-valued estimators 
for πit, t = 0, 1

π̂i1|yij, ri j ∈
(

yi

yi + ν1
,
yi + ν1

yi + ν1

)
(11)

and

π̂i0|yij, ri j ∈
(

ri − yi

ni − yi + ν0
,

ri − yi + ν0

ni − yi + ν0

)
. (12)

The sought relationship between Ri and yi can be established by substituting the suitable upper and lower limits of π̂i1

and π̂i0 from (11) and (12), respectively, into (10) to obtain the following set-valued estimator of Ri

R̂i ∈
(
R̂i, R̂i

)
:=

(
yi

ri − yi + ν0
· ni − yi + ν0

yi + ν1
,
yi + ν1

ri − yi
· ni − yi + ν0

yi + ν1

)
, (13)

that shows that both R̂i and R̂i are strictly decreasing functions of yi .3 It is then certain that the limits of R̂i are attained 
at R̂i and R̂i shown in (13).

It is worth noting that as long as ν1, ν0 > 0, the following relationship is always satisfied

yi

ri − yi + ν0
<

yi + ν1

ri − yi
,

3 Unless we let ν1 + ν0 = −ni , which is an unreasonable choice for ν1 and ν0.
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which implies that R̂i < R̂i for any given value of the unknown frequency yi . This note, however, does not necessarily 
apply if we substitute two different values y(1)i < y(2)i of yi into (13).

Indeed, we are interested in exploiting the strict negative relationship between R̂i and R̂i and yi by substituting y
i
= yi

and yi = yi + ni − ri from (7) into R̂i and R̂i , respectively, to obtain a cautious version of the estimator R̂i . Applying this 
substitution results in receiving R̂�

i (ni, ri, yi), the cautious version of Ri , that takes the form

R̂�
i (ni, ri,yi) ∈

(
R̂�

i, R̂�
i

)
:=

(
yi

yi + ni − ri + ν1
,

ni − yi + ν0

ri − yi

)
. (14)

It is notable from (14) that both R̂�
i and R̂�

i are strictly non decreasing functions in the observed frequency yi .4

Moreover, since

yi

yi + ni − ri + ν1
< 1 <

ni − yi + ν0

ri − yi
, 0 ≤ yi ≤ ri ≤ ni, ν1, ν0 > 0, (15)

we will always have R̂�
i < 1 < R̂�

i , which confirms that the cautious estimator R̂�
i does not exclude the case of missing at 

random.
The middle panel of Table 2 shows the limits of R̂�

i for all domains using the NCS data (taking ν1 = ν0 = 1). Collectively 
for all domains, the cautious response rate is limited to the range (0.661, 1.12). Although this range shows an obvious 
tendency of victimized households to respond less frequently than the non-victimized ones, the assumption of random 
nonresponse should not be excluded as the value 1 is contained within the interval of R̂�

i .

5. Incorporating assumptions regarding the missingness process

The relationship between R̂i and R̂i , and yi indicated by (13) can be further exploited to incorporate assumptions 
regarding the missingness process. To do so, we obtain the following inverse relations between R̂i and R̂i , and yi :

yi = yi(ni + ν0) − R̂iν1(ri − yi + ν0)

yi + R̂i(ri − yi + ν0)
, (16)

yi = (yi + ν1)(ni + ν0) − R̂iν1(ri − yi)

yi + ν1 + R̂i(ri − yi)
. (17)

Then, utilizing the relationship between R̂i and R̂i and yi , we can obtain (guessed) limits of the unknown frequency 
yi under certain assumed values, R(A)

i and R(A)

i , of R̂i and R̂i , respectively. Appendix A shows that for two different yi

guessed values, y�
(1)i and y�

(2)i resulting from substituting R̂i and R̂i in (16) and (17), respectively, to satisfy y�
(1)i < y�

(2)i , 

we should choose R(A)
i and R(A)

i such that

R(A)

i

R(A)
i

<
(yi + ν1)(ri − yi + ν0)

yi(ri − yi)
. (18)

For R(A)
i and R(A)

i that do not necessarily satisfy (18), the interval of yi resulting from using (16) and (17) can be 
represented as 

((
y�

(1)i, y�
(2)i

))
, where the notation ((l, k)) denotes an interval whose lower (upper) limit is the minimum 

(maximum) of l and k, ∀ l, k ∈R.

It is possible to choose R(A)
i and R(A)

i to represent a specific assumption regarding the missingness process. Hence, the 
interval 

((
y�

(1)i, y�
(2)i

))
will represent yi values under that assumption.

In Appendix B we show that the limits y(1)i and y(2)i obtained by constraining Ri to be within R̂�
i and R̂�

i , the cautious 
limits of R̂i , will always be within the cautious limits of yi shown in (7). That is, yi < y�

(1)i, y
�
(2)i < yi + ni − ri ∀ 0 ≤ yi ≤

ri ≤ ni . This means, it is possible to obtain a narrower cautious interval for the unknown frequency yi under assumptions 
on the missingness process. Hence, we obtain a narrower cautious interval for �̂i utilizing the following equivalent form of 
(8)

4 Unless we let ν1 = ν0 = −(ni − ri), which is an unreasonable choice for ν1 and ν0.
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�̂i =
(
�̂i, �̂i

)
:=

⎛
⎝Min

(
y�

(1)i, y�
(2)i

)
ni + ν

,
Max

(
y�

(1)i, y�
(2)i

)
+ ν

ni + ν

⎞
⎠ . (19)

In order to give a concrete application of these results, we propose to utilize the intuitive assumption that victimized 
households tend to respond less frequently comparing to their non-victimized counterparts, i.e. Ri < 1. Incorporating this 
assumption does not contradict to the cautious nature of our treatment since it does not impose any hard-to-be-proven 
restrictions on the data generating process.

The right panel of Table 2 shows the interval limits of the posterior expectations �̂ for the NCS data under the extension 
of the IBM assuming the aforementioned assumption, Ri < 1 (taking ν = ν1 = ν0 = 1). These estimates have lower limits 
equivalent to the naive estimates – thus reflecting the increase in the estimated victimization probability under the assump-
tion of nonrandom nonresponse – and upper limits equivalent to the cautious estimates obtained without any assumptions 
regarding Ri – reflecting the still cautious nature of the assumption Ri < 1, and hence, have narrower intervals than the 
cautious assumption-free estimates.

6. Imprecise probability extension of the empirical Bayes approach

As shown in Section 2, traditional empirical Bayes inference founds the analysis on a single fixed value φ̂
�

of a high di-
mensional hyperparameters φ . We regard this to be over-optimistic and argue that considering a class of prior distributions, 
instead, is more suitable. Therefore, we propose in this section another framework that can be seen as an extension to the 
usual empirical Bayes approach.

Recalling the nonrandom nonresponse model of Stasny [27] introduced in Section 2, let the prior distributions of θi and 
πit be characterized by having a compact, convex set of hyperparameters �. Let θ̂i(φ) be the domain estimator resulting 
from the direct application of the empirical Bayes approach for a specific value φ of �. With φ̂ as the maximum likelihood 
estimator of φ the estimator θ̂

(E)
in (4) corresponds to θ̂i(φ̂).

Instead of the estimator θ̂i(φ̂), we propose the following more credible, set-valued estimator

�̂i(�̂) :=
[
�̂i(�̂), �̂i(�̂)

]
:=

[
inf
φ∈�̂

θ̂i(φ), sup
φ∈�̂

θ̂i(φ)

]
, i = 1, · · · ,m, (20)

where �̂ is an appropriately specified subset of �.
Preserving the principle of borrowing strength in the SAE setting at hand, a simultaneous optimization of θ̂i(φ) for all 

domains w.r.t. φ results in the set-valued estimator �̂(�̂), where

�̂(�̂) :=
{(

θ̂1(φ), · · · , θ̂m(φ)
)ᵀ ∣∣∣∣φ ∈ �̂

}
. (21)

Fundamentally, there are several ways to specify �̂. We suggest, as a kind of a generalized empirical Bayes approach, to 
let �̂ be data-dependent by taking �̂ to be a defined neighborhood of φ̂ . A natural definition of such neighborhood is to 
rely on a certain threshold δ of the relative marginal likelihood, and thus considering all prior probabilities with a relatively 
high predictive power for the actually observed sample. That is, let (Y , R) represent the data from all domains and take 
�̂ as the convex hull of all values φ with f(Y , R|φ)/f(Y , R|φ̂) ≥ δ. This rule to select a set of hyper priors fits naturally to 
the general inference framework recently developed by Moral [13], see also Cattaneo [6] already discussing this rule in the 
context of (dis)continuity of generalized Bayesian updating.

Defining a neighborhood along these lines requires complete knowledge of the behavior of f(Y , R|φ) over all possible φ. 
Such knowledge is not straightforwardly attainable, though, especially for complex likelihood functions.

To explain our approach, we base our illustration on the likelihood of the nonrandom nonresponse model of Stasny [27]
and we define two neighborhoods with radii in relative terms of the components of φ̂: the first is defined with radius 
ε = 0.9 ∗ φ̂ and the second is defined such that �̂ :=

{
φ
∣∣0 < φ ≤ 3 ∗ φ̂

}
.

As a surrogate for (21), the right panel of Table 3 shows for the NCS data the domain specific estimates �̂i(�̂) for each 
neighborhood. It is worth noting that, by construction of �̂ as a neighborhood of φ̂ , the estimate �̂i(�̂) contains the em-
pirical Bayes estimates θ̂i(φ̂). Observing that domains with small samples (e.g. RIL, UNH and RIH) have set-valued estimates 
with large interval widths may suggest an effect of the domain sample size. Such effect suggests limitation of borrow-
ing strength using only the response variable, therefore motivates inclusion of auxiliary covariates through an appropriate 
model. This approach is known as model-based small area estimation (cf. e.g. Datta [7]).

7. Concluding remarks

We discussed cautious treatment of nonresponse using data pertaining to small domains with the aim of estimating 
proportions utilizing an imprecise probability perspective. First, we extended the IBM through a generalization that allows 
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Table 3
Interval limits of the posterior expectations �̂(φ) for the NCS data under the exten-
sion of the empirical Bayes approach.

Domain ε = 0.9 ∗ φ̂ �̂
†

�̂i(�̂) �̂i(�̂) �̂i(�̂) �̂i(�̂)

UCL 0.269 0.275 0.232 0.317
UCH 0.261 0.269 0.210 0.331
UIL 0.273 0.279 0.236 0.321
UIH 0.248 0.260 0.182 0.345
UNL 0.300 0.310 0.240 0.380
UNH 0.268 0.308 0.102 0.626
RIL 0.244 0.287 0.078 0.633
RIH 0.174 0.197 0.073 0.386
RNL 0.160 0.172 0.103 0.261
RNH 0.209 0.217 0.165 0.275

†�̂ :=
{
φ
∣∣0 < φ ≤ 3 ∗ φ̂

}
.

handling missing data by cautious data completion and allowing for borrowing strength across domains. Furthermore, by 
utilizing an IBM also for the response process, we proposed a framework obtaining more informative set-valued estimates 
by incorporating tenable assumptions like the assumption that victimized households have a lower response probability 
than the non-victimized ones. Then, we proposed an imprecise probability extension of the empirical Bayes estimation of 
the nonrandom nonresponse model of Stasny [27] through considering a neighborhood of the hyperparameters, instead of 
depending on the single-valued empirical Bayes estimate.

Both our extensions can readily form bases for further development to nonresponse treatments refraining from strong 
assumptions that are hardly testable. From a practical perspective, it is of great interest to consider not only binary but 
multi-categorical responses. The results developed in Sections 3, 4 and 5 promise to be generalizable indeed, starting from 
the imprecise Dirichlet model instead of the imprecise Beta model.

A referee kindly pointed us to the Imprecise Hierarchical Dirichlet Model (IHDM) proposed by Benavoli [3], which pro-
duces by imprecise hyper models a shrinkage effect. This indeed makes the IHDM readily suitable for the SAE setting and 
provides an interesting alternative to the starting point of our approach in Section 3. Since, as can be seen in Benavoli [3, 
Corallary 1], the main inference is still linear in the domain-specific responses, it looks promising to try to extend not only 
the techniques described in Sections 3, but even our developments from Sections 4 and 5 to the IHDM setting.

For the generalized empirical Bayes approach, an extension to multi-categorical responses seems technically possible as 
well, but it must not be forgotten that the dimension of the hyperparameters then becomes even substantially larger, further 
increasing the computational challenges. From a foundational perspective, quite in accordance with the general framework 
recently proposed by Moral [13], our second approach demonstrated the attractiveness of looking at a combination of tra-
ditional empirical Bayes estimation and imprecise probability concepts, aiming at a sort of an imprecise empirical Bayes 
method. In some sense, depending on the size of the neighborhood, this method lies on a continuum between the over-
precise traditional empirical Bayes rule on the one extreme and, on the other extreme, Walley’s generalized Bayes rule, 
sometimes criticized as being rather conservative in updating. As a first step towards a more in-depth study of the mer-
its and properties of this approach, the different ways to construct the different types of neighborhood of empirical Bayes 
estimates have to be investigated further, theoretically as well as from the computational point of view.
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Appendix A

Let y�
(1)i and y�

(2)i be two guessed values of yi resulting from substituting R(A)
i and R(A)

i using (16) and (17), respec-
tively, such that y�

(1)i < y�
(2)i . Then we have

yi(ni + ν0) −R(A)
i ν1(ri − yi + ν0)

y +R(A)
(r − y + ν )

<
(yi + ν1)(ni + ν0) −R(A)

i ν1(ri − yi)

(A)
,

i i i i 0 yi + ν1 +Ri (ri − yi)
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that implies(
yi(ni + ν0) −R(A)

i ν1(ri − yi + ν0)
)

×
(
(yi + ν1) +R(A)

i (ri − yi)
)

<
(
yi +R(A)

i (ri − yi + ν0)
)

×
(
(yi + ν1)(ni + ν0) −R(A)

i ν1(ri − yi)
)

,

which can be simplified to obtain the condition represented in (18).

Appendix B

Let R(A)
i and R(A)

i be chosen such that

R(A)
i = R̂�

i = yi

yi + ni − ri + ν1
, R(A)

i = R̂�
i = ni − yi + ν0

ri − yi
,

and y�
(1)i and y�

(2)i be the two guessed values of yi resulting from substituting R(A)
i and R(A)

i using (16) and (17), respec-
tively. Then we have

y�
(1)i =

yi(ni + ν0) −
(

yi
yi + ni − ri + ν1

)
ν1(ri − yi + ν0)

yi +
(

yi
yi + ni − ri + ν1

)
(ri − yi + ν0)

= yi + ni − ri,

and

y�
(2)i =

(yi + ν1)(ni + ν0) −
(

ni − yi + ν0
ri − yi

)
ν1(ri − yi)

yi + ν1 +
(

ni − yi + ν0
ri − yi

)
(ri − yi)

= yi .

Since both y(1)i and y(2)i are decreasing functions in R(A)
i and R(A)

i , respectively, then choosing R(A)
i such that R(A)

i >

R̂�
i will result in y�

(1)i that satisfies y�
(1)i < yi + ni − ri . Similarly, choosing R(A)

i that satisfies R(A)

i < R̂�
i will result in y�

(2)i
that satisfies yi < y�

(2)i .
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